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Abstract: We present DexUMI - a data collection and policy learning framework
that uses the human hand as the natural interface to transfer dexterous manip-
ulation skills to various robot hands. DexUMI includes hardware and software
adaptations to minimize the embodiment gap between the human hand and var-
ious robot hands. The hardware adaptation bridges the kinematics gap using a
wearable hand exoskeleton. It allows direct haptic feedback in manipulation data
collection and adapts human motion to feasible robot hand motion. The soft-
ware adaptation bridges the visual gap by replacing the human hand in video data
with high-fidelity robot hand inpainting. We demonstrate DexUMI’s capabilities
through comprehensive real-world experiments on two different dexterous robot
hand hardware platforms, achieving an average task success rate of 86%.

Keywords: Dexterous Manipulation, Learning from Human, Imitation Learning

XH
and

Inspire-H
and

Long-Horizon Contact-Rich

 Multi-Finger Precise

Diverse SkillsDemo w. DexUMI Robot Execution

Figure 1: DexUMI transfer dexterous human manipulation skills to various robot hand by using wearable
exoskeletons and a data processing framework. We demonstrate DexUMI’s capability and effectiveness on
both underactuated (e.g., Inspire) and fully-actuated (e.g., XHand) robot hand for a wide variety of manipulation
tasks. Please see project website https://dex-umi.github.io/ for details.

1 Introduction
Human hands are incredibly dexterous in a wide range of tasks. Dexterous robot hands are designed
with the hope of replicating this capability. However, it remains a significant challenge to transfer
skills from human hands to robotic counterparts due to their substantial embodiment gap. This
gap manifests in various forms, such as differences in kinematic structures, contact surface shape,
available tactile information, and visual appearance.
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What further complicates this challenge is the diversity of dexterous hand hardware designs available
today. Each robotic hand presents different engineering trade-offs in degrees of freedom, motor
ranges, actuation mechanisms, and overall dimensions. The solution for reducing the embodiment
gap must handle the vast hardware design space. Teleoperation has become a popular manipulation
interface for dexterous hands. However, teleoperation can be difficult due to the spatial observation
mismatch and the lack of direct haptic feedback. These problems do not exist when human hand can
perform the manipulation task directly. In other words, human hand itself is a better manipulation
interface. In this paper, we ask the following question:

How can we minimize the embodiment gap, so that we can use the human hand
as the universal manipulation interface for diverse robot hands?

To answer this question, we propose DexUMI, a framework with hardware and software adaptation
components that is designed to minimize the action and observation gaps.

The hardware adaptation takes the form of a wearable hand exoskeleton. A user can directly
collect manipulation data while wearing it. The exoskeleton is designed for each target robot hand
through a hardware optimization framework that refines exoskeleton parameters (e.g., link lengths)
to closely match the robot finger trajectories while maintaining wearability for the human hand. The
hardware adaption provides the following benefits:

• Intuitive demonstration with direct haptic feedback: Unlike teleoperation systems, the wear-
able exoskeleton has no spatial mismatch and allows users to directly contact objects during
manipulation, making the demonstration intuitive and doable without a robot.

• Records feasible motion for the robot hand: The exoskeleton constrains human hand motions
to match the kinematics of the target hand, ensuring the recorded motion is transferable.

• Capturing precise joint action: Unlike retargeting methods, our exoskeleton reads precise joint
angles directly from encoders, eliminating inaccuracies due to visual fingertip tracking.

• Matching tactile information for learning: Most handheld grippers for data collection [1–3] do
not record the tactile information. Our design includes additional tactile sensors on the fingertip
to record the same tactile info as what the robot hand would record.

Our software adaptation takes the form of a data processing pipeline that bridges the visual ob-
servation gap between human demonstration and robot deployment. This processing pipeline first
removes the human hand and exoskeleton from the demonstration video using video segmentation,
then inpaints the video with the corresponding robot hand and environment backgrounds that match
the target action. This adaptation ensures visual input consistency between training and robot de-
ployment, despite visual differences between human and robotic hands.

With both hardware and software adaptation layers, DexUMI allows us to collect data on various
tasks with minimal kinematic and visual gaps then transfer skills to robots. Comprehensive real-
world experiments demonstrate DexUMI’s capability on two different dexterous hand types: a 6-
DoF Inspire hand [4] and a 12-DoF XHand [5]. Our approach achieves 3.2 times greater data
collection efficiency compared to teleoperation and an average success rate of 86% across four tasks
, including long-horizon and complex tasks requiring multi-finger contacts.

2 Related Work
Although extensive work has studied how to enable learning in simulated environments [6–20], we
focus on reviewing real world data collection methods.

Teleoperation: Teleoperation is a popular interface for dexterous manipulation. Hand control is
achieved with motion capture gloves [21–25], virtual-reality devices [26–28], or camera-based track-
ing [29–35]. Most approaches employ optimization-based retargeting to map human fingertips to
robot hand. While being adaptable to different robot platforms, retargeting struggles with fundamen-
tal morphological differences between human and robot hands, especially the thumb flexibility [36].
Recent work by Zhou et al. [37] introduced a hand exoskeleton for direct joint mapping, but the me-
chanical structural differences limit the mapping accuracy. Additionally, teleoperation or kinesthetic
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Figure 2: Exoskeleton Design. The optimized exoskeleton design shares the same joint-to-fingertip position
mapping as the target robot hand while maintaining the wearability. The exoskeletons utilizes the encoder to
precisely capture the joint action and 150° DFoV camera to record the information-rich visual observation. An
iPhone is rigidly mounted to track the wrist pose through the ARKit.

teaching [38] require the robot hardware to be present, limiting the flexibility of data collection. In
contrast, DexUMI collects manipulation data without physical robots.

Human hand video: Learning manipulation skills from human hand video is an attractive direction.
Prior works have explored learning affordance [39–42] or extracting human and object pose [43–
47] from video. Though showing promising results, many of these works either require additional
real-world robot data or need to learn the policy in simulation and depend on privileged information,
such as object pose, to deploy the policy in the real world.

Wearable devices: Another line of work focuses on designing wearable devices for data collection,
such as portable hand-held grippers [1–3, 48–57]. These approaches have demonstrated promising
results in scaling real-robot manipulation skills. However, these systems primarily target simple par-
allel/pinch grippers and cannot be easily adapted to multi-fingered systems. Alternatively, Dexcap
[58] uses motion capture gloves for in-contact data collection. However, it still relies on retargeting
methods and human-correction data through teleportation. In contrast, our method eliminates these
requirement, enabling direct policy deployment with data collected through DexUMI. Recently, Wei
and Xu [59] and Fang et al. [60] proposed hand-over-hand systems for dexterous hands. These works
require the actual robot hand to be available and lifted by the human hand.

3 Hardware Adaptation to Bridge the Embodiment Gap
This section introduces our hardware adaptation, which is a wearable exoskeleton design that adapts
human motion to feasible robot actions. While the final exoskeleton design is robot-specific, the
principles of the design framework can be shared. We introduce the design framework in two parts:
mechanism design optimization (§3.1) and sensor integration (§3.2).

3.1 Exoskeleton Mechanism Design
Modern robot hands often closely mimic human hands anatomically, meaning that a hand exoskele-
ton would compete for space with the human hand wearing it. The biggest challenge is for the
thumb, whose pronation–supination movement can sweep a large volume and cause significant col-
lision between the human thumb and a naively designed exoskeleton. Our exoskeleton design has
two goals to achieve:

1. Shared joint-action mapping: The exoskeleton and the target robot hand must share the same
joint-to-fingertip position mapping, including their limits, so the action can transfer.

2. Wearability: The exoskeleton must allow sufficient natural movements of the user’s hand.

While the first goal can be mathematically defined, the wearability goal is hard to write down con-
cretely. Our solution is to parameterize the exoskeleton design and formulate the wearability require-
ments as constraints on the design parameters, then find a solution that accommodates wearability
while preserving kinematic relationships by solving an optimization. To make the optimization fea-
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sible, we prioritize the exact kinematics of fingertip links, while allowing greater flexibility in the
kinematics of links less likely to contact objects.

E.1 Design initialization: We initialize the design with parameterized robot hand models based on
URDF files (See Fig. 3). When such detailed designs are unavailable (e.g., the Inspire-Hand’s finger
mechanisms), we substitute them with equivalent general linkage designs with the same DoFs (e.g.,
a four-bar linkage) and allow optimization to find parameters that best match the observed kinematic
behavior. Please see Appendix for details.
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Figure 3: Mechanism Optimization. To avoid thumb
collision between human hand and exoskeleton, the
hardware optimization step allows us to move the ex-
oskeleton thumb backward while still preserving the
original fingertip and joint mapping in SE(3) space.

E.2 Bi-level optimization objective: Our
optimization objective maximizes the fol-
lowing similarity: maxp S(W tip

exo(p),W tip
robot),

where W tip
exo and W tip

robot represent the finger-
tip workspaces (set of all possible fingertip
pose in SE(3)) for the exoskeleton and robot
hand, respectively. p = {j1, ..., jn, l1, ..., lm}
is the exoskeleton design parameters including
joint positions ji ∈ R3 in the wrist coordi-
nate (i.e., flange) and linkage lengths lj . The
function S(·, ·) represents a similarity metric
between the two workspaces, which quantifies
how closely the exoskeleton’s fingertip pose distribution matches that of the robot hand. In practice,
the S(·, ·) is implemented as minimization by sampling configurations from both workspaces. Given
a set of K robot hand configurations θrobot,k and N exoskeleton configurations θexo,n:

S(W tip
exo(p),W tip

robot) = −
( K∑

k=1

min
θexo

∥F tip
exo(p,θexo)−F tip

robot(θrobot,k)∥2

+

N∑
n=1

min
θrobot

∥F tip
exo(p,θexo,n)−F tip

robot(θrobot)∥2
)

(1)

where F tip
exo and F tip

robot are the forward kinematics for the exoskeleton and robot hand respectively.
Optimizing the first term encourages the exoskeleton to cover the robot hand’s workspace by finding
exoskeleton configurations closest to the sampled robot hand configurations. The second term re-
quires W tip

exo(p) ⊆ W tip
robot, ensuring the exoskeleton’s fingertip workspace remains within the robot

hand’s capabilities, preventing generation of unreachable poses outside the robot hand’s workspace.

E.3 Constraints: We apply bound constraints ji ∈ Ci and lmin
j ≤ lj ≤ lmax

j , which are empirically
selected to ensure that the exoskeleton can be comfortably worn. For example, we want to move
the thumb swing joint closer to the wrist along the x-axis under MANO [61] convention to avoid
collision between the human thumb’s pronation–supination movement and that of the exoskeleton.

3.2 Sensor Integration
Sensors on the exoskeleton need to satisfy the following design objectives:

1. Capture sufficient information: the sensors need to capture ALL the information necessary for
policy learning, which includes: robot action such as joint angle (S.1) and wrist motion (S.2), as
well as observations in both vision (S.3) and tactile (S.4).

2. Minimize embodiment gap: the sensory information should have minimal distribution shift be-
tween human demonstration and robot deployment.

S.1 Joint capture & mapping. To precisely capture joint actions, our exoskeleton integrates joint
encoders at every actuated joint – using resistive position encoders for both the XHand and Inspire-
hand. We choose the Alps encoder [62] for its size and precision. Due to the joint friction and
motor backlash, the mapping between exoskeleton joint encoder θiexo and robot hand motor Mi

robot
values is often non-linear, therefore, we train a simple regression model for each joint to obtain this
mapping. To calibrate the regression model, we collect a set of paired data by uniformly sampling K
motor values on the physical robot for each finger and then find the corresponding exoskeleton joint
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Figure 4: Bridging the Visual Gap. To convert the visual observation into policy training data, we first segment
the exoskeleton using SAM2 (b) and inpaint the missing background (c). The corresponding joint action (a) is
replayed on the dexterous hand to obtain the robot hand image (d). SAM2 is applied to obtain the robot mask
(e). The intersection (f) of the exoskeleton mask (b) and robot mask (e) identifies the visible part of the hand
during interaction. Finally, we replace pixels in the inpainted background (c) with the visible robot hand (g).

value by overlaying the visual observation between the robot hand and exoskeleton. This process
creates a paired dataset for us to train the regression model.

S.2 Wrist pose tracking. We use iPhone ARKit to capture the 6DoF wrist pose, as smartphones
represent the most accessible devices capable of providing precise spatial tracking. This tracking
device is only needed for data collection, not for robot deployment.

S.3 Visual observation. We mounted a 150° diagonal field of view (DFoV) wide-angle camera
OAK-1 [63] under the wrist for both the exoskeleton and the target robot dexterous hand. This
positioning was chosen to effectively capture hand-object interactions. Critically, the camera poses
in the wrist frame were identical for the exoskeleton and the robot hand, which maintains visual
consistency between training and deployment.

S.4 Tactile sensing. The wearable exoskeleton allows users to directly contact objects and receive
haptic feedback. However, this human haptic feedback cannot be directly transferred to the robotic
dexterous hand. Therefore, we install tactile sensors on the exoskeleton to capture and translate these
tactile interactions. To ensure consistent sensor readings, we install the same type of tactile sensors
on the exoskeleton as those used on the target robot hand. For XHand, we use the electro-magnetic
tactile sensor that comes with the hand. For the Inspire-Hand, we install the same resistive tactile
sensor Force Sensitive Resistor [64] for both the exoskeleton and the robot hand.

4 Software Adaptation to Bridge the Visual Gap
Fig. 4 shows the visual gap between human demonstration (a) and robot deployment (h). To bridge
this visual gap, we developed a data processing pipeline to adapt the demonstration image into
what the robot will see as if the robot hand was collecting data. This adaptation uses off-the-shelf
pretrained models to ensure generalizability. The adaptation takes four steps:

V.1 Segment human hand and exoskeleton. Firstly, we segment (Fig. 4b) the human hand and
exoskeleton on observation videos using SAM2 [65]. Since SAM2 requires initial prompt points,
we established a protocol where the human operator always begins with the same hand gesture,
allowing us to reuse the same prompt points for all demonstrations.

V.2 Inpaint environment background. With segmentation, we remove the human hand and the
exoskeleton pixels from the image data. Then we use ProPainter [66], a flow-based inpainting
method, to fully refill (Fig. 4c) the missing areas [67–69].

V.3 Record corresponding robot hand video. Next, to render robot hand properly into the video, we
replay the recorded joint action on the robot hand and record another video with only the robot hand
(Fig. 4d). This step does not involve the robot arm. We then used SAM2 again to extract the robot
hand pixels (Fig. 4e) and discard the background. Notice, it is possible to train an image generation
model to output the robot hand image based on the actions, but it requires additional model training.
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Figure 5: Policy Rollout: We evaluate DexUMI’s capabilities across challenging real-world tasks. The Cube
task tests basic picking precision. The Egg Carton task evaluates multi-finger coordination. The Tea Picking
task assesses performance on contact-rich manipulation requiring millimeter-level fine-grained fingertip ac-
tions. Finally, the Kitchen task tests capabilities on long-horizon high-precision actions to manipulate a knob,
move a pan using both the side of thumb and index finger (beyond just fingertips), and utilize tactile sensing
for visually challenging salt picking tasks.

V.4 Compose robot demonstrations. The last step is to merge the inpainted-background-only video
with robot-hand-only video. It is crucial to maintain proper occlusion relationships: the robot hand
does not always appear on top. We developed an occlusion-aware compositing approach leveraging:
(1) our consistent under-wrist camera setup, and (2) the kinematic and shape similarity between the
exoskeleton and robot hand. We compute a visible mask (Fig. 4f) by intersecting the exoskeleton
mask and robot hand mask. Rather than naively overwriting pixels, we selectively replace pixels in
the inpainted observation with robot hand pixels only if those pixels are present in the visible mask.
This preserved natural occlusion relationships between the hand and objects when viewed from
our under-wrist camera perspective. This approach generated visually coherent robot manipulation
demonstrations that maintained proper spatial relationships.

Imitation learning. Our imitation learning policy p(at|ot, ft) takes processed visual observation
ot and tactile sensing ft as input. The output is a sequence of actions {at, . . . , at+L} of length L,
starting from the current time t, denoted as at. The robot action at includes a 6-DOF end-effector
action and N-DOF hand action where N depends on the specific robot hand hardware.

5 Evaluation
Target robot hands: We evaluate DexUMI across two different robot hands:

• Inspire Hand (IHand): A twelve-DoF (six active DoFs) underactuated hand. The thumb has two
active and two passive DoFs, while each remaining finger has one active and one passive DoF.
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Method Inspire Hand XHand

Action Tactile Visual Cube Carton Tea Tea Kichen
tool leaf tool leaf knob pan salt

Rel Yes Inpaint 1.00 0.85 1.00 0.85 1.00 0.85 0.95 0.95 0.75
Abs Yes Inpaint 0.10 0.35 0.80 0.00 1.00 0.25 0.50 0.45 0.00
Rel No Inpaint 0.95 0.90 1.00 0.90 0.95 0.80 0.95 0.95 0.15
Abs No Inpaint 0.90 0.85 0.90 0.60 1.00 0.75 0.60 0.60 0.0
Rel No Mask 0.60 0.10 0.90 0.50 / / / / /
Rel No Raw 0.20 0.05 0.85 0.05 / / / / /

Table 1: Evaluation Results. We report stage-wise accumualted success rate. The experiments compare
different combinations of finger action representation (Absolute vs Relative), tactile feedback (Yes vs No), and
visual rendering approaches (Inpaint vs Mask/Raw).

• XHand: A fully-actuated hand with twelve active DoFs. The thumb contains three DoFs, the
index finger has three DoFs, and each of the remaining fingers has two DoFs.

Tasks: We evaluate DexUMI across four different real-world tasks:
• Cube [IHand]: Pick up a 2.5cm wide cube from a table and place it into a cup. This evaluates

the basic capabilities and precision of the DexUMI system.
• Egg Carton [IHand]: Open an egg carton with multiple fingers: the hand needs the index, mid-

dle, ring, and little fingers to apply downward pressure on the carton’s top while simultaneously
using the thumb to lift the front latch.

• Tea [IHand & XHand]: Grasp tweezers from the table and use them to transfer tea leaves from
a teapot to a cup. The main challenge is to stably operate the deformable tweezers with multi-
finger contacts.

• Kitchen [XHand]: The task involves four sequential steps: turn off the stove knob; transfer the
pan from the stove top to the counter; pick up salt from a container; and lastly, sprinkle it over
the food in the pan. The task tests DexUMI’s capability over long-horizon tasks with precise
actions, tactile sensing and skills beyond using fingertips.

Comparison: We evaluate the impact of policy action space choices, tactile sensing, and software
adaptation on system performance.

• Relative vs. Absolute finger action: We compare the form of finger action trajectory: absolute
position or relative trajectory proposed by [1]. We always use relative position for wrist action.

• With vs. Without tactile sensing: We trained policies with and without tactile sensor input.
• With vs. Without software adaptation: We examine two variants without software adaptation:

(1) Mask, which replaces pixels occupied by the exoskeleton (during training) or robot hand
(during inference) with a green color mask, and (2) Raw, which simply passes unmodified images
containing the exoskeleton as policy input.

Evaluation protocol: For each evaluation episode, the test objects are randomly placed on the table
at initialization. We conduct 20 evaluation episodes per task, maintaining consistent initial object
configurations across our method and all baselines. For long horizon tasks, we report stage-wise
accumulated success rate in Tab. 1.
5.1 Key Findings
DexUMI framework enables efficient dexterous policy learning: As shown in Tab. 1, the Dex-
UMI system achieves high success rates across all four tasks on two robot hands. The system
handles precise manipulation, long-horizon tasks, and coordinated multi-finger contact, while effec-
tively generalizing across diverse manipulation scenarios.

Relative finger trajectories are more robust to noise and hardware imperfections: Tab. 1 shows
relative finger trajectory consistently achieves better success across all tasks. Fig. 6 shows more
insights: relative trajectory can make critical contact events more reliable. We hypothesize two rea-
sons for this difference: 1. Relative action has a simpler distribution than absolute and is thus easier
to learn; 2. Relative action learns a reactive behavior where the delta action keeps accumulating
until a key event is reached (e.g. fingers close on contact). However, the absolute action learns a
static mapping and would stall if the mapping has errors.
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Figure 6: Comparisons. a) The policy outputs relative hand actions yield more precise action and demonstrate
better multi-finger coordination. Note, we draw a sketch for the knob closing for better visualization. b) Even
with noisy tactile sensor reading, the tactile significantly improve tasks which is visually challenging.

Only relative finger trajectories can benefit from the noisy tactile feedback: An interesting
observation in Tab. 1 is how having tactile affects the results differently. The tactile sensor on the
XHand can drift and become inconsistent after experiencing high pressure. Therefore, in most cases,
having tactile makes the results worse. We observed that only with relative trajectory can the policy
benefit from having such tactile sensing. For the Inspire hand, the tactile sensors we manually
installed are even more noisy (See section §3.2 for details), then all methods become worse after
adding tactile sensor as input. However, policies with relative trajectory still suffer less performance
drop compared with the ones with absolute trajectory.

Tactile feedback improves performance on tasks with clean force profiles: We try to understand
what kind of task would benefit from having tactile sensing. We focused on the XHand as its
tactile sensors provide cleaner readings. We observed that tactile feedback significantly improved
performance on picking up salt. This task highlights the effect of tactile because 1) The tactile
sensors give a clear, large reading when the fingers touch the bowl of salt. 2) There is little useful
visual information close to grasping as the camera view is mostly blocked by the bowl. In this
case, we found that tactile feedback completely changes policy behavior. With tactile sensors, the
fingers always insert into the salt first then close the fingers. Without tactile feedback, the fingers
attempt to grasp the salt sometimes in the air. On the contrary, tactile info does not help in tweezer
manipulation, which lacks strong correlation between hand motion and force feedback. Holding a
tweezer only triggers minimal tactile sensor readings.

36

51

11

Figure 7: Efficiency: Collection throughput
(CT) within 15-minute. Though DexUMI
still slower than bare hand, it achieves sig-
nificant higher efficiency than teleportation.

DexUMI framework enables efficient dexterous hand
data collection: We compared data collection efficiency
across three ways: DexUMI, bare human hand, and tele-
operation on the tea-picking-with-tool task. The same hu-
man operator collected data using each approach within
15-minute sessions. We computed the collection through-
put (CT) based on the number of successful demonstra-
tions acquired. As illustrated in Fig. 7, while DexUMI
remains slower than direct human hand manipulation, it
achieves 3.2 times greater efficiency than traditional tele-
operation methods, significantly reducing the time re-
quired for dexterous manipulation data collection.

6 Conclusion
We present DexUMI, a scalable and efficient data collection and policy learning framework that
uses the human hand as an interface to transfer human hand motion to precise robot hand actions
while providing natural haptic feedback. Through extensive challenging real-world experiments, we
demonstrate DexUMI’s capability in learning dexterous manipulation policies for precise, contact-
rich, and long-horizon tasks. Our work establishes a new approach to collecting real-world dexterous
hand data efficiently and at scale beyond traditional teleoperation.
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7 Limitation and Future Work

We would like to discuss DexUMI’s limitations from three different aspects: hardware adaptation,
software adaptation, and existing robot hand hardware.

Hardware Adaptation:

• Per robot hand exoskeleton design: Although DexUMI demonstrates generalizability across
underactuated and fully-actuated hands, our optimization framework still requires hardware-
specific tuning, especially for wearability. One future work direction is fully automated opti-
mization formulation given robot hand model and some description of the human hand. Further,
our hardware optimization framework can potentially leverage generative models [70] to increase
efficiency and accuracy when design space grows.

• Fingertips Matching: Our current formulation focuses only on matching the fingertip workspace
between the designed exoskeleton and target robot hand. It would be interesting for future work
to also model remaining potential contact geometries such as the palm.

• Wearability: The hardware optimization pipeline makes the exoskeleton wearable and allows
humans to operate it relatively easily for extended periods. However, wearability could be further
improved by integrating soft materials, such as TPU for parts that contact the human hand.
Additionally, constrained by both the design of the target hand and 3D printing material strength,
users might still experience limitations in fully stretching certain fingers.

• Reliability of Tactile Sensors: Throughout our experiments, we found that reliable tactile sensors
are key to maintaining consistent tactile observation between the exoskeleton and corresponding
robot hand, thereby reducing the embodiment gap. In our implementation, the resistive tactile
sensors added to the Inspire hand and its exoskeleton proved sensitive to their attachment way
on fingers. Meanwhile, the electromagnetic tactile sensors on the XHand and its exoskeleton
showed a tendency to drift after exposure to high pressure. Since the human hand generates
more force than the robot hand, tactile sensor readings frequently drift when humans operate the
exoskeleton. Future work can also incorporate other types of tactile sensors, such as vision-based
tactile sensors [71–73] and capacitive F/T sensors [74].

• Material Limitations: Our experiments demonstrate that DexUMI is able to capture fine-grained
fingertip actions such as closing tweezers. However, we sometimes found that encoders cannot
precisely capture human motion due to 3D printing material strength limitations; occasionally,
the human hand slightly distorts the exoskeleton linkage when manipulating objects. In such
cases, encoders are unable to capture this distortion.

Software Adaptation:

• Robot Hand Image: Currently, we still require real-world robot hardware to obtain robot hand
images. However, this requirement could be eliminated by implementing an image generation
model that receives motor values as input and produces corresponding hand pose images as
output.

• Inpainting Quality: Throughout our experiments, we found that the current software adaptation
pipeline can already yield high-fidelity robot hand images. Nevertheless, we observed that il-
lumination effects on the robot hand cannot be fully reproduced, and some areas in the image
appear blurred due to limitations in the inpainting process.

• Camera Location: DexUMI currently requires the camera to be rigidly attached to the robot
hand/exoskeleton and does not support a moving camera. However, it would be feasible to
collect a dataset and train an image generation model that receives the relative pose between the
camera and hand, along with hand pose information, to generate the corresponding hand pose
image from any given camera position.

Existing Robot Hand Hardware:

• Precision: Throughout our experiments, we found that both the Inspire Hand and XHand lack
sufficient precision due to backlash and friction. For example, the fingertip location of the Inspire
Hand differs when moving from 1000 to 500 motor units compared to moving from 0 to 500
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motor units. Although the desired motor value is the same in both cases, the final fingertip
position varies. We observed this phenomenon in both robot hands. Consequently, when fitting
regression models between encoder and hand motor values, we can typically ensure precision in
only “one direction”—either when closing the hand or opening it. This inevitably causes minor
discrepancies in the inpainting and action mapping processes. Further, we found that the XHand
mapping between motor command and fingertip location slightly differs across time shifts or
after each reboot.

• Size Discrepancy: The size difference between the robot hand and the human hand may cause
wearability issues. For example, if the robot hand is twice as large as the human hand, it becomes
difficult for both the human hand and the exoskeleton to reach the joint configurations required
by the robot hand.

• Co-design: Many of these wearability issues arise from design constraints in existing commer-
cial hardware. An interesting direction would be to explore a reverse design paradigm: first
designing an exoskeleton that is comfortable and fully operable for humans, and then using that
exoskeleton as the foundation for designing the robot hand.
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Appendix

A Additional Experiment Results

We show the processed visual observation by the software adaptation layer in policy training data in
Fig. 8. Our software adaptation bridges the visual gap by replacing the human hand and exoskeleton
in visual observations recorded by the wrist camera with high-fidelity robot hand inpainting. Though
the overall inpainting quality is good, we found there are still some deficiencies in the output caused
by:

• Imperfect Segmentation from SAM2: In most cases, SAM2 can segment the human hand and
exoskeleton effectively. However, we notice SAM2 sometimes misses some small areas on the
exoskeleton.

• Quality of inpainting method: We use flow-based inpainting to replace the human and ex-
oskeleton pixels with background pixels. Though the overall quality is high, some areas remain
blurry. We add Gaussian blur augmentation to the images during policy training to make the
policy less sensitive to this blurriness.

• Robot hand hardware limitations: Throughout our experiments, we found that both the Inspire
Hand and XHand lack sufficient precision due to backlash and friction. For example, the finger-
tip location of the Inspire Hand differs when moving from 1000 to 500 motor units compared to
moving from 0 to 500 motor units. Consequently, when fitting regression models between en-
coder and hand motor values, we can typically ensure precision in only ”one direction”—either
when closing the hand or opening it. This inevitably causes minor discrepancies in the inpainting
and action mapping processes.

• Inconsistent illumination: Similar to prior work [69], we found that illumination on the robot
hand might be inconsistent with what the robot experiences during deployment. Therefore, we
add image augmentation including color jitter and random grayscale during policy training to
make the learned policy less sensitive to lighting conditions.

• 3D-printed exoskeleton deformation: The human hand is powerful and can sometimes cause
the 3D-printed exoskeleton to deform during operation. In such cases, the encoder value fails
to reflect this deformation. Consequently, the robot finger location might not align with the
exoskeleton’s actual finger position.

B Evaluation Details

B.1 Initial State Selection

For each task, we manually select a set of initial states for the environment. Objects are placed as
diversely as possible within the environment. This set of initial states is shared across all methods.
We achieve consistency by placing an additional side camera to record images of all selected initial
states. When starting a new evaluation episode, we visualize an image overlay between the recorded
pre-selected initial state and the current initial state. We carefully adjust the current setup until it
matches the pre-selected initial state with near pixel-perfect alignment.

Note that due to differences in wrist camera placement relative to the robot flange between the
XHand and Inspire Hand, some initial states viable for the Inspire Hand cannot be completed by the
XHand. For example, if the tea cup is positioned more than 45◦ to the left of the tea pot (image
space), the XHand’s wrist camera cannot capture the tea cup after grasping the tea due to its camera
positioning (the XHand thumb has a larger range of motion, requiring us to rotate the wrist camera
more toward the thumb direction to obtain clearer visual observations). Consequently, the XHand
and Inspire Hand do not strictly share the same set of initial states for the Tea Picking Using Tool
task. Nevertheless, we ensure their initial states remain within similar distributions and maintain as
much diversity as possible.

For the kitchen task, the large workspace presents challenges for a fixed-base single UR5 to cover
diverse initial states, particularly regarding the seasoning bowl location, as the stove and knob posi-
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Figure 8: Inpainting Results. The visual observations in the original collected dataset contain exoskeletons
and human hands. The software adaptation layer replaces these pixels with corresponding robot hand images
while preserving the natural occlusion relationships during hand-object interactions. Please see project website
https://dex-umi.github.io for details.

tions are fixed. Despite these constraints, we maximize the diversity of bowl placement within the
kinematically feasible workspace.

B.2 Success Criteria

Cube Picking: The robot must pick up the red cube and place it into the yellow cup. If the cup falls
over after the cube is already placed in it, we still count the episode as successful.

Egg Carton: We define task success as when the lid is lifted up with its box at an angle greater than
30◦ and the egg box remains stable on the shelf.
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Tea Picking Using Tool: This task consists of two sub-tasks. We define tool picking success as the
robot’s ability to steadily hold the tweezers and move them to the tea pot. We define leaf picking
success as the robot’s ability to use tweezers to 1) grasp at least one tea leaf from the pot and 2)
transfer at least half of the grasped tea leaf into the cup. Subsequent sub-tasks automatically count
as failures if the previous sub-task fails, even if the robot can successfully complete the later sub-
tasks.

Kitchen Manipulation: This task consists of three sub-tasks. We define knob closing success as the
robot hand rotating the knob by at least 60◦ from its initial position. We define pan moving success
as the robot moving the pan from the stove to the counter without dropping it during transfer. We
define the salt task success as the robot 1) grasping some seasoning from the bowl and 2) sprinkling
it inside the pan. Subsequent sub-tasks automatically count as failures if the previous sub-task fails,
even if the robot can successfully complete the later sub-tasks.

B.3 Policy Execution

The learned policy predicts 16 steps of future actions, but the robot only executes the first 8 steps
and discards the rest. The policy executes at 10 Hz, while the UR5 executes commands at 125 Hz.
The Inspire Hand executes at 10 Hz, and the XHand executes at 60 Hz. The 10 Hz policy commands
are linearly interpolated to match the desired hardware execution frequency.

The action output by the policy contains two components: relative UR5 end-effector action and hand
action. The relative end-effector action from the learned policy is converted to absolute by adding
the relative action to the current UR5 absolute position in the UR5 base frame. For hand actions, if
the action type is absolute, the desired motor value is sent directly to the robot hand for execution. If
the hand action type is relative, we first read the current hand motor position, add the relative hand
action to it, and then send the result for execution.

For the XHand, we found that creating a virtual current hand motor position improves performance
compared to reading the current position directly from hardware. Unlike the Inspire Hand motor,
which is self-locking, the XHand finger position slightly drifts after encountering external forces
(such as the restoring force of tweezers). The 10 Hz policy isn’t reactive enough to adjust for this
real-time drifting. Consider the following scenario: the robot hand attempts to close the tweezers
to grasp tea leaves. The current motor value obtained by calling the hardware API might already
be outdated due to the restoring force of the tweezers (causing fingers to spread wider) when robot
execution begins. To address this issue, we initialize a virtual current hand motor position by reading
the actual motor position at the beginning of the evaluation. Once the evaluation begins, we update
this virtual hand motor position by adding the executed relative hand actions. With this virtual hand
motor position approach, finger actions become less impacted by physical drifting, resulting in more
precise and reliable grasping operations.

C Exoskeleton Design Details

C.1 Inspire Hand

Underactuated hands like the Inspire Hand typically incorporate closed-loop kinematics, such as
four-bar linkages, which cannot be directly represented in URDF. As a result, we cannot initialize
the exoskeleton design for the Inspire Hand directly from its URDF model. Instead, our approach
is to capture the finger kinematic behavior—specifically, the fingertip poses—and use equivalent
general linkage designs with the same degrees of freedom (DoFs) as an initial template for the
finger mechanisms. This allows the optimization process to identify parameters that best match the
observed kinematics.

To achieve this, we employed a motion capture system (see Fig. 9) to record the fingertip poses in
SE(3) space. We 3D-printed marker mounting components for each finger and flange and installed
them on the Inspire Hand. For the index, middle, ring, and pinky fingers, each of which has a single
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DoF, we uniformly sampled 16 motor command values from the lower limit (0) to the upper limit
(1000), sent the commands to the fingers, and recorded the corresponding fingertip poses.

For the thumb, which has 2 DoFs—swing and bend—we first fixed the swing value and then uni-
formly sampled the bend motor values. For example, as shown in Fig. 9d, we set the swing motor
to 400 and recorded the fingertip poses by varying the bend motor command. We repeated this
procedure for swing values of 0, 200, 400, 600, 800, and 1000.

Pinky RingMiddle
Index

Swing = 0

Swing = 1000

Swing = 400 Flange

(a) Index/Middle/Ring/Pinky 
Markers

(b) Thumb Markers (c) Flange Markers

(d) Recorded Mocap Trajectories

Figure 9: Inspire Mocap: We use motion capture sys-
tem to record fingertips trajectories in the flange coor-
dinate. We attached marker on fingers and flange to
capture the fingertip pose in flange coordinate.

After obtaining the fingertip poses in the flange
coordinate system, we applied the same bi-level
optimization formulation defined in Equation 1
in main paper to determine design parameters
for each finger. For all five fingers, we em-
ployed four-bar linkages as the linkage designs.
For each sampled design parameter, We simu-
late the fingertip poses using PlaCo [75]. For
thumb, we minimized the overall loss across
all swing motor values, since the thumb’s struc-
tural configuration should remain consistent re-
gardless of the swing motor value.

From the optimized design parameters to the
physical implementation, we apply three addi-
tional steps to ensure that the exoskeleton mask
consistently covers the real Inspire Hand. First,
we extend the length of the last link of each fin-
ger in the exoskeleton design by 3 mm beyond
the optimized value. This guarantees that the
exoskeleton mask always fully covers the last link of the actual Inspire Hand. Second, we increase
the width of the thumb’s four-bar linkage to eliminate any hollow regions in the camera’s field of
view, thereby maintaining the visual integrity of a continuous exoskeleton mask. Third, we conser-
vatively tighten the joint limits by 5◦ at each joint to ensure the mask continues to cover the real
Inspire Hand even when structural deformation occurs due to the limited strength of the 3D-printed
PLA-CF material.

C.2 XHand

Since the URDF file of the XHand is well-organized, with each joint origin defined at the location of
its corresponding rotary joint, we can directly extract link lengths from the URDF structure. In cases
where the exact values are not specified, we can perform reverse modeling using the STL meshes
from URDF file to recover geometric features near each joint and manually measure link lengths in
CAD software.

Joint limits are also specified in the URDF file and are implemented in the exoskeleton design by
physically constraining the link motion to prevent rotation beyond the specified range. Similar to the
Inspire Hand exoskeleton design, we adopt a conservative strategy when applying these limits setting
slightly tighter bounds on each joints. For example, if the actual joint rotation range is −110◦ to 20◦,
the corresponding exoskeleton limit is set to −105◦ to 15◦. This precaution accounts for possible
deformation of the 3D-printed exoskeleton links under human-applied torque, which can introduce
unintended joint deflection. Without this buffer, the exoskeleton might deform beyond the physical
limits of the XHand, leading to an embodiment gap.

When converting the link lengths to the actual exoskeleton design, two primary constraints must be
considered. The first is wearability. To ensure that the human operator can comfortably wear the
exoskeleton, the structure must be hollowed out as much as possible, allowing the finger to pass
through unobstructed. The second constraint is material strength. Through empirical testing, we
determined that the optimal minimum structural width for 3D-printed PLA-CF material is 4 mm.
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Therefore, any part expected to experience significant stress is reinforced to be at least 4 mm thick
in the final design.

D Sensor Details

D.1 Joint Encoder

Figure 10: Joint Encoder Circuit: The ro-
tary sensor acts as a variable resistor with
three output pins. As it rotates with the joint,
the voltage on the ADC line changes approx-
imately linearly.

Our exoskeleton uses Alps RDC506018A rotary sensors
as encoders at every joints. These are resistive sensors
whose resistance varies approximately linearly with ab-
solute angular position.

As shown in Fig. 10, when the joint rotates, the voltage on
the ADC line changes proportionally. This analog voltage
signal is then sampled by an Analog-to-Digital Converter
(ADC) on a microcontroller unit (MCU). Then the joint
angle αjoint can be estimated as:

αjoint =
VADC

3.3V
× 360◦

However, this simple voltage divider circuit has a sig-
nificant failure mode: if the power supply (3.3 V in our
case) is unstable due to temperature drift in semiconduc-
tor components or ripple from DC-DC converters and LDOs, the joint angle reading will drift ac-
cordingly. To mitigate this issue, we simultaneously measure the supply voltage through another
ADC channel. Instead of dividing by a fixed 3.3 V, we normalize the sensor voltage using the mea-
sured supply voltage when computing the joint angle:

αjoint =
VADC

Vsupply
× 360◦

This voltage normalization runs in real time on the MCU. After computing the joint angles, the MCU
packs all joint values into a single data packet with a fixed 2-byte header and a checksum tail. The
header simplifies decoding by allowing the receiver to locate a known keyword in variable-length
data streams, while the checksum ensures packet integrity. The final data packet is transmitted to
the host computer via a Universal Asynchronous Receiver-Transmitter (UART) interface.

D.2 Tactile

Figure 11: Voltage Divider Circuit: This
simple voltage divider circuit converts the
resistance change of the FSR sensor into an
analog voltage on the ADC line.

For commercial dexterous hands without built-in tactile
sensors (e.g., the Inspire Hand in our evaluation), we use
a simple and low-cost Force-Sensitive Resistor (FSR) as
the tactile sensor. When no force is applied, the FSR ex-
hibits a resistance of several megaohms, while under sig-
nificant force, the resistance drops to the kiloohms range.
As shown in Fig. 11, the FSR is incorporated into a sim-
ple voltage divider circuit to produce an analog voltage
signal. The divider resistor R1 is selected to be compara-
ble to the minimum resistance of the FSR. Since the FSR
resistance is approximately inversely proportional to the
applied force, we can express the force using a constant
scale factor k as:

F = k

(
Vsupply

VADC
− 1

)
In our experimental setup, the same FSR sensor is mounted on both the dexterous hand and the
exoskeleton. For simplicity, we directly use the VADC reading as a proxy for tactile input.
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For hands equipped with onboard tactile sensors (e.g., the XHand), we install the same type of
sensor as used in the hand. In our setup, this sensor is a magnet-based tactile array capable of
measuring three-dimensional forces across 120 points on its surface. The force data is output via
an SPI communication interface using a proprietary protocol. By configuring this interface on our
embedded system, the force array can be successfully transmitted to the host machine.

E Data Collection and Policy Training details

E.1 Data Collection

We collected 310 trajectories for Cube Picking task policy training, 175 trajectories for Egg Carton
Opening task policy training, and 400 trajectories for Tea Picking Using Tools policy training (for
both Inspire Hand and XHand). For the kitchen task, we collected 370 trajectories covering all four
sub-tasks, plus an additional 100 trajectories focused solely on knob closing.

For the Inspire Hand, all data types—including wrist position from ARKit, policy visual obser-
vations from the wrist-mounted camera, joint angles from encoders, and tactile feedback—were
recorded at 45 FPS. For the XHand, we recorded at 30 FPS, as the tactile sensor readings became
unstable at higher recording frequencies. For each data type, we recorded the receive timestamp
treceive when the data arrived at the recording buffer.

We wear green gloves when collecting data with exoskeleton as we use green PLA-CF to 3D-printed
the exoskeleton. We found consistent color helps SAM2 to yield better segmentation results.

E.2 Training Data Latency Management

There is an inherent latency between the time when sensors capture data and when that data actually
arrives in the recording buffer. To ensure our imitation learning policy receives properly aligned
observations (visual observations, tactile sensor readings) and actions (joint encoder readings), we
calculate the actual data capture time using tcapture = treceive − lsensor, where lsensor refers to the
latency from capture to receive for a particular sensor. We measure the iPhone and OAK camera
latency by reading a rolling QR code displayed on a computer monitor showing the current computer
system time, as proposed in UMI [1]. The camera and iPhone latency is calculated as lcamera =
treceive − tdisplay − ldisplay, where ldisplay represents the monitor refresh rate.

The encoder latency is adjusted by examining the overlay image between the recorded exoskeleton
image and the corresponding robot hand image from action replay. If the encoder latency is set
too high, the robot hand fingers will execute future actions and lead in the overlay image. If the
encoder latency is set too low, the robot hand fingers will lag behind the exoskeleton fingers in
the overlay image. We tune the encoder latency until the exoskeleton fingers and robot fingers are
perfectly aligned. Once all data timestamps are adjusted, we linearly interpolate the joint angles
and tactile readings to obtain data points properly aligned with the camera timestamps. Finally, We
downsample the data by a factor of 3 to reduce the policy training time.

E.3 Policy Training

We process the visual observations with pretrained DINO-V2 [76, 77]. Before passing the visual
observations into DINO-V2, we augment it with random crop, color jitter, random grayscale and
Gaussian Blur. We concatenate the CLS token from DINO-V2 with tactile sensor readings as input
to the diffusion policy [78, 79]. The policy predicts 16 steps of robot actions, which contain both
6-DoF robot end-effector relative actions and hand actions (6-DoF for Inspire Hand and 12-DoF for
XHand). We train the models for 400 epochs across all tasks for both types of hands. The pretrain
DINO-V2 is not frozen and updated during the policy training.
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